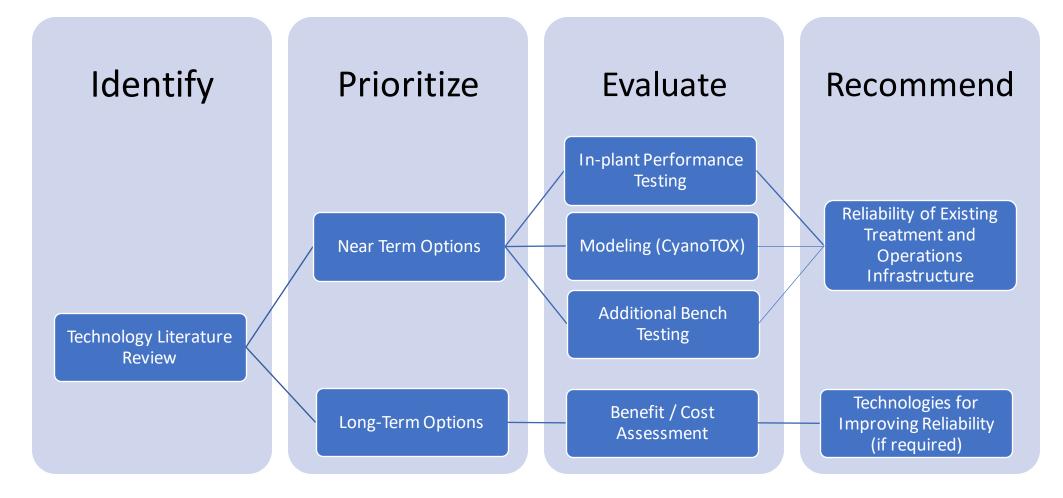


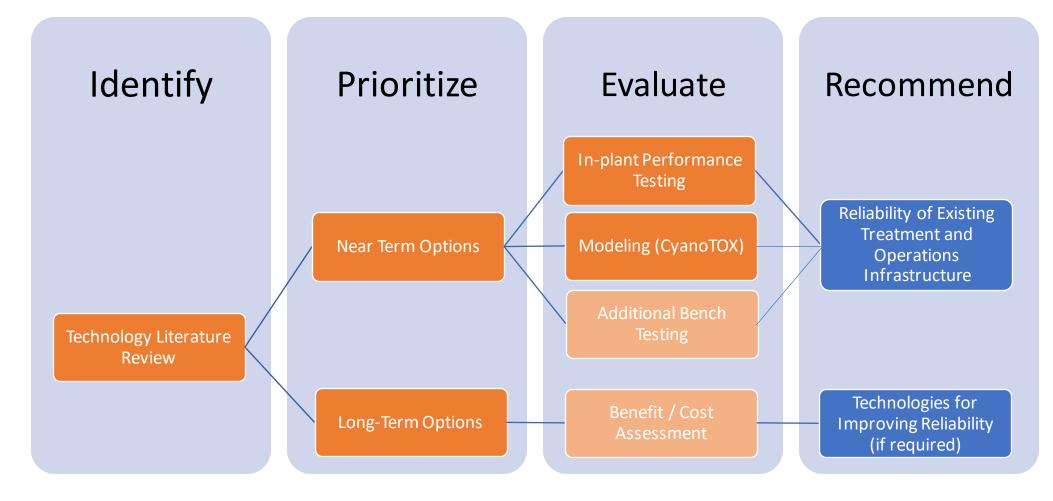
Cyanotoxin Expert Panel

Technical Session 5

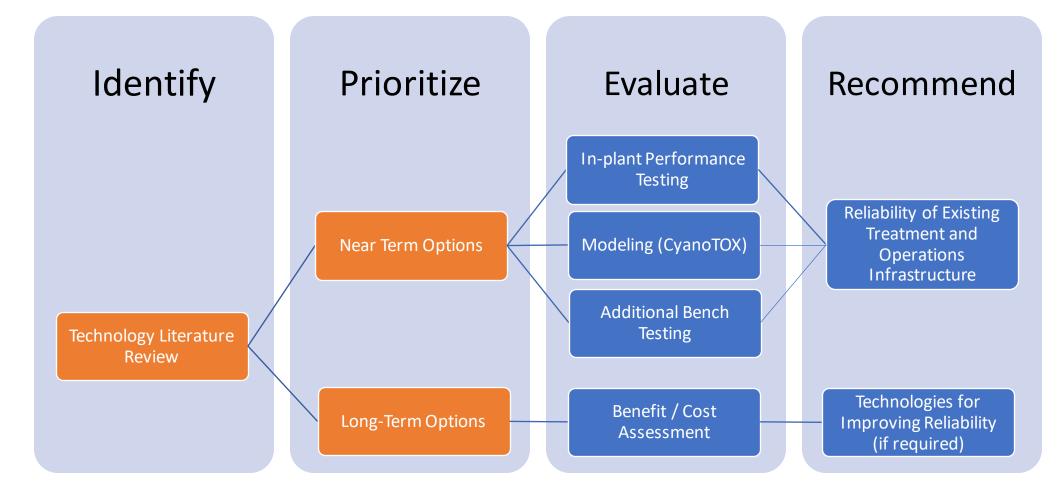
September 14, 2021 | 12:30 – 2:30 pm

Public Works Conference Room & Virtual Teams Meeting


Agenda

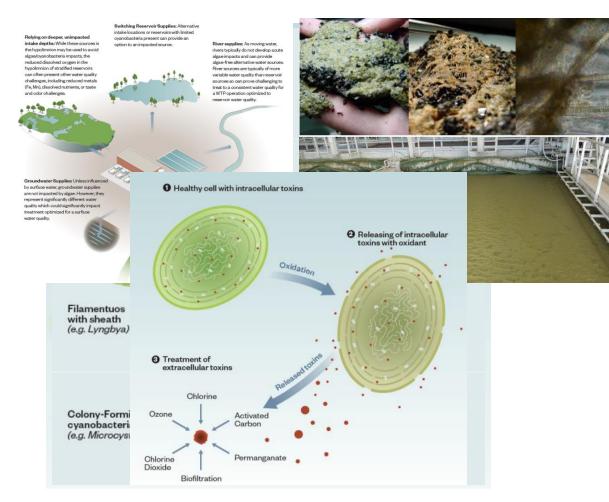

12:30 pm	Introduction
12:35	Treatment & Operations Updates (Erik Rosenfeldt, Bill Becker)
1:35	Source Water Quality & Operations Updates (Chandra Mysore)
2:25 pm	Next Steps & Adjourn

Treatment and Ops Evaluation WES

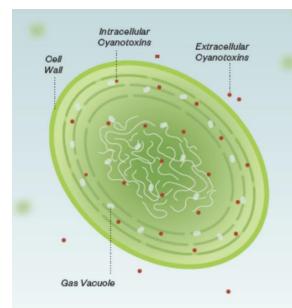


Treatment and Ops EvaluationImage: Constraint of the second s

Treatment and Ops EvaluationImage: Constraint of the second s



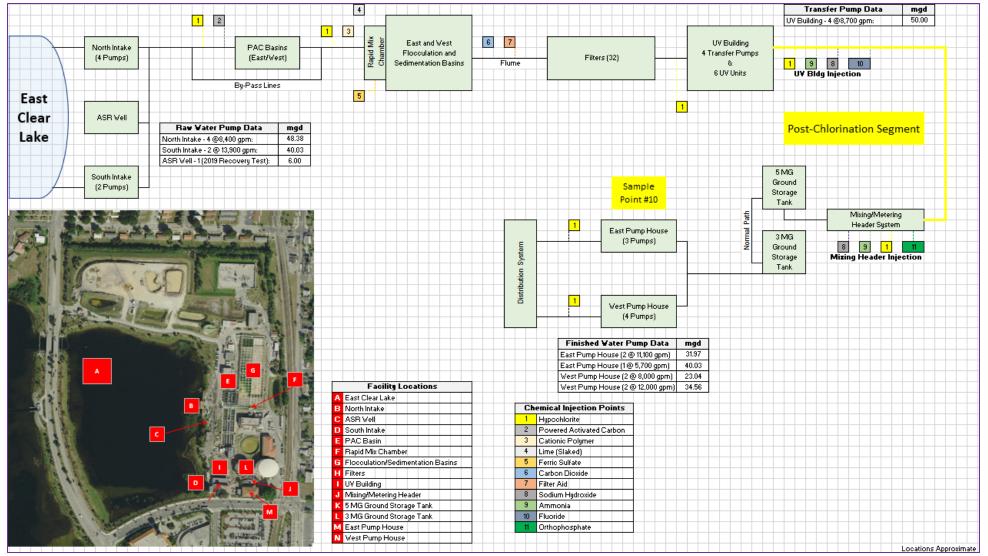
- Water Research Foundation 4692
 - Eric Wert
 - Arash Zamyadi
 - Craig Adams
 - Erik Rosenfeldt
 - Katherine Greenstein
 - Djanette Khiari

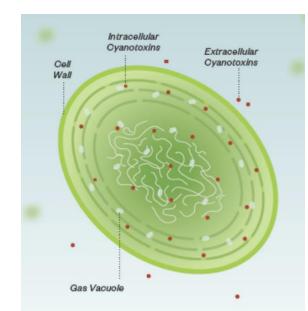

- Access the file through web or QR code
 - https://www.waterrf.org/system/files/resource/2019-08/DRPT-4692b.pdf

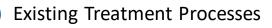
- Concepts Described include
 - Intracellular vs. Extracellular Toxins
 - Cell Morphology Impacts on Treatment
 - Strategies for Managing Cyanobacteria Cells and Intracellular Cyanotoxins
 - Manage Sources
 - Remove Cells Intact
 - "Release and Treat"

https://www.waterrf.org/system/files/resource/2019-08/DRPT-4692b.pdf

						Physicochen	nical Processe	s				
		Sedimentation		Filtration			Membranes			Sorption		
		Coag/Floc/ Sed	Coag/DAF	Direct filtration w/	Direct filtration	Bank filtration	Biofiltration	RO	NF	MF	PAC	GAC
	Cyanobacteria Cell Removal	~ 90%	50 - 100%	Likely	Possible	Likely	Likely	Effective	> 97%	> 97%	No	Likely
	Microcystin	Expected	Expected	Expected	Expected	Possible	Likely	Effective	Likely	No	Varied	Likely*
	Cylindrospermopsin	Not Expected	Not Expected	Not Expected	Not Expected	Possible	Likely	Likely	Likely	No	Varied	Likely*
	Anatoxin A	Not Expected	Not Expected	Not Expected	Not Expected	Possible	Possible	Likely	Likely	No	Varied	Likely*
5	Saxitoxin	Not Expected	Not Expected	Not Expected	Not Expected	Possible	N/A	Likely	Likely	No	Varied	Likely*
	MIB and geosmin	Not Expected	Not Expected	Not Expected	Not Expected	Possible	Likely	Effective	Likely	No	Varied	Likely*


* Compound is well removed until carbon capacity is exhausted


Oxidant	Microcystins	Microcystin-L/	Cylindro- spermopsin	Anatoxin A	Saxitoxins	GTX2, GTX3 and C1, C2	Nodularins	MIB and geosmin	BMAA
Free chlorine	рН		рН	Slow/no oxidation			рН		рН
Monochloramine	Slow/no oxidation					?			?
Chlorine dioxide	Slow/no oxidation					?	?		?
Permanganate						?	?	?	Slow
Ozone			pН	pН				(HO* only)	pН
Hydroxyl radical					?				pН
UV	High doses	High doses	High doses	High doses	?	?	?	High doses	High doses

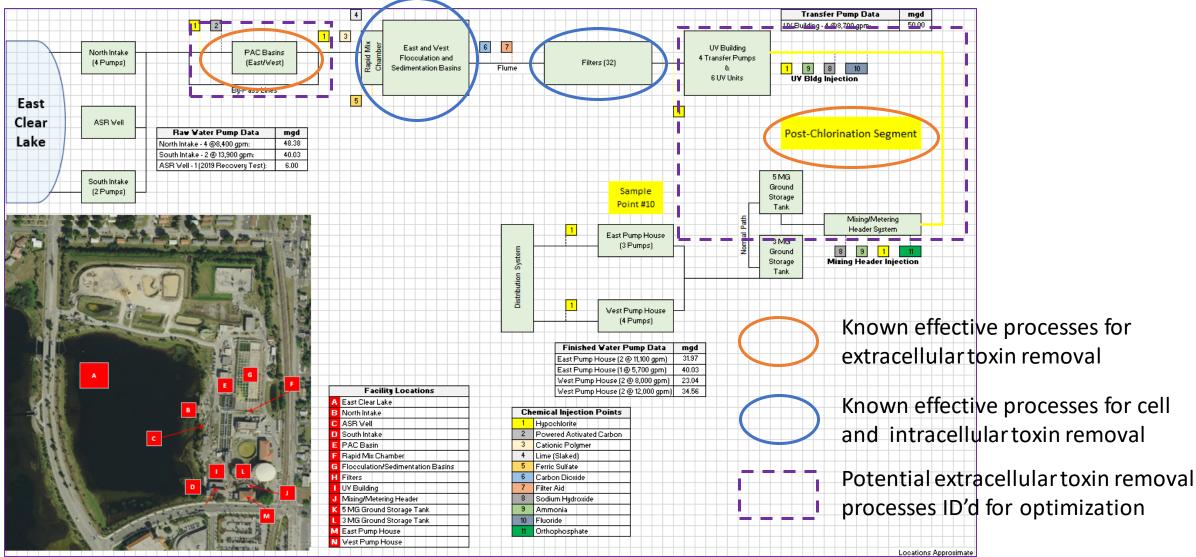


West Palm Beach Process

WEST PALM BEACH

Potential Future Processes

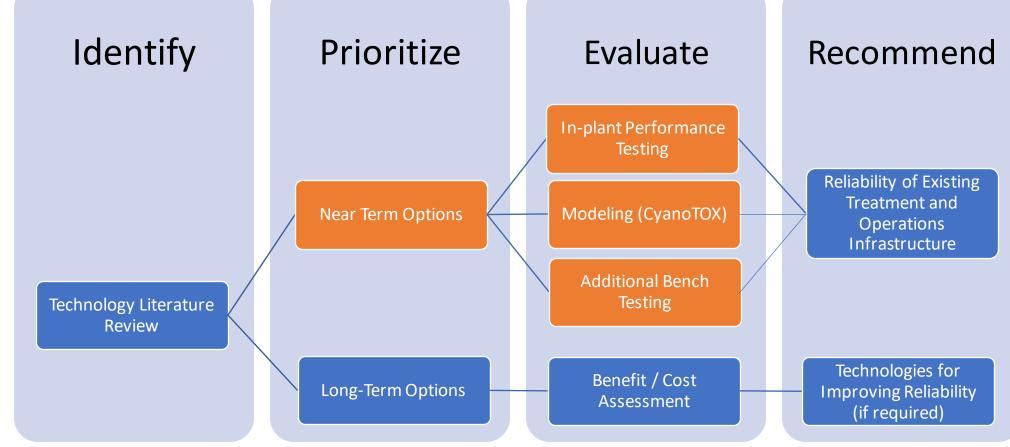
		Physicochemical Processe									
	Sedimentation			Filtration			Membranes			Sorption	
	Coag/Floc/ Sed	Coag/DAF	Direct filtration w/ coag	Direct filtration w/o coag	Bank filtration	Biofiltration	RO	NF	MF	PAC	GAC
Cyanobacteria Cell Removal	~ 90%	50 - 100%	Likely	Possible	Likely	Likely	Effective	> 97%	> 97%	No	Likely
Microcystin	Not Expected	Not Expected	Not Expected	Not Expected	Possible	Likely	Effective	Likely	No	Varied	Likely*
Cylindrospermopsin	Not Expected	Not Expected	Not Expected	Not Expected	Possible	Likely	Likely	Likely	No	Varied	Likely*
Anatoxin A	Not Expected	Not Expected	Not Expected	Not Expected	Possible	Possible	Likely	Likely	No	Varied	Likely*
Saxitoxin	Not Expected	Not Expected	Not Expected	Not Expected	Possible	N/A	Likely	Likely	No	Varied	Likely*
MIB and geosmin	Not Expected	Not Expected	Not Expected	Not Expected	Possible	Likely	Effective	Likely	No	Varied	Likely*


* Compound is well removed until carbon capacity is exhausted

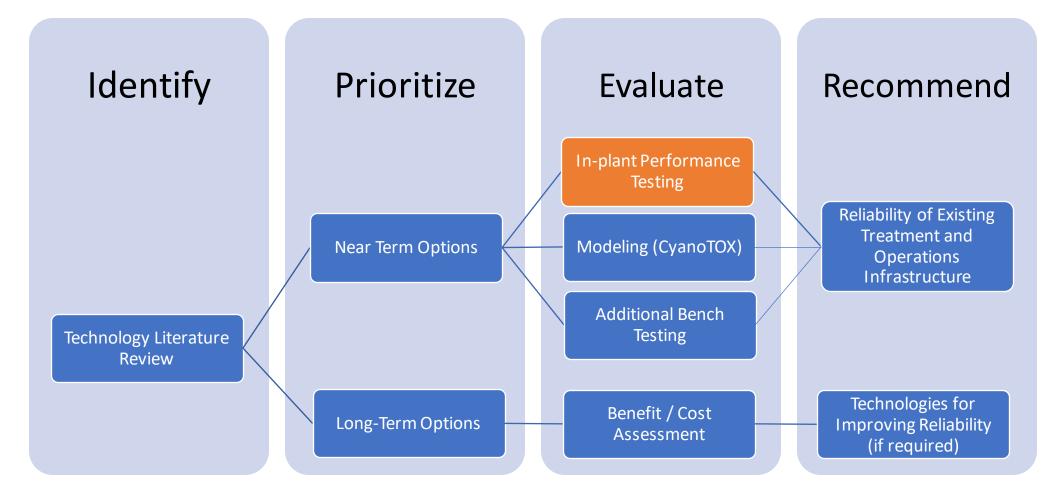
Oxidant	Microcystins	Microcystin-LA	Cylindro- spermopsin	Anatoxin A	Saxitoxins	GTX2, GTX3 and C1, C2	Nodularins	MIB and geosmin	BMAA
Free chlorine	рН		рН	Slow/no oxidation			рН		рН
Monochloramine	Slow/no oxidation					?			?
Chlorine dioxide	Slow/no oxidation					?	?		?
Permanganate						?	?	?	Slow
Ozone			рН	рН				(HO* only)	pН
Hydroxyl radical					?				pН
UV	High doses	High doses	High doses	High doses	?	?	?	High doses	High doses

West Palm Beach Process

WEST PALM BEACH



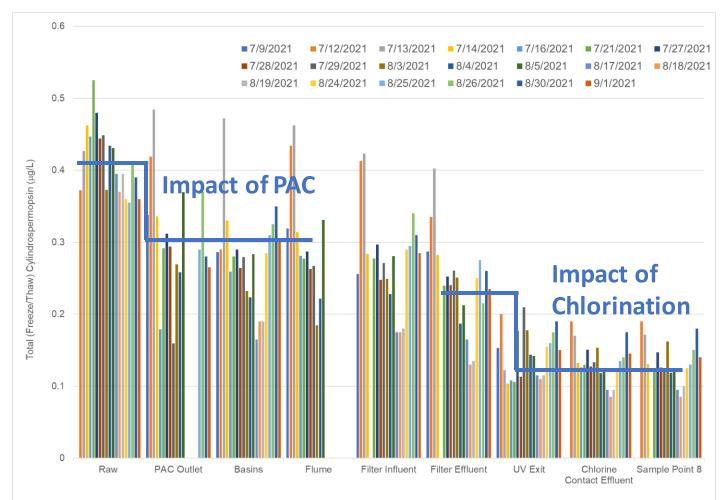
Literature Review and Prioritization Results



- Near-Term Options for Further Study
 - Focusing on optimizing within existing infrastructure constraints
 - PAC, chlorine oxidation
 - Considering both benefits and drawbacks of treatment options
 - Modeling, in-plant testing, additional bench testing where needed
 - Recommendations to include optimization strategies to enhance performance and definition of limits of reliable performance
- Future Long-Term Options for Consideration
 - Several advanced treatment options effective for cylindrospermopsin control
 - Ozone, GAC, Advanced Oxidation, Reverse Osmosis / Nanofiltration Membranes
 - Will consider feasibility, benefits, costs, and drawbacks of technologies
 - Recommendations may include technologies for further consideration

Treatment and Ops Evaluation Strategy – Evaluate Near-Term Options

Treatment and Ops EvaluationImage: Constraint of the second s



In-Plant Performance Testing

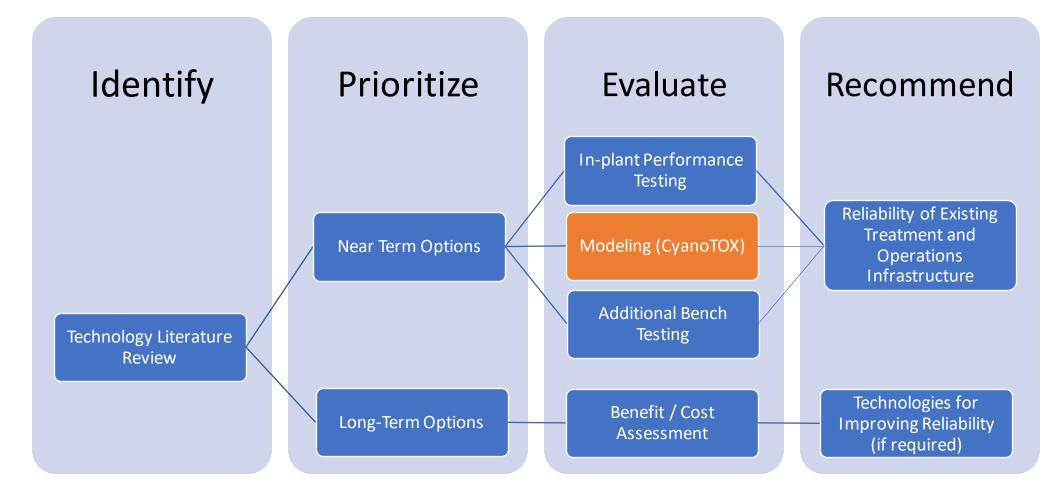
Key Takeaways

- PAC Generally Effective
 Data after 7/14 considered
- Biological Filters are not showing much removal
- "UV" chlorination strategy is working well
- Chlorine Contact is not removing much if anything?

In-Plant Performance Testing Summary of Removal

	Process	Average	Min	Max	
Limited and variable effectiveness	PAC → Sed Basins¹	35%	13%	60%	
	Biofilters ²	14%	-4%	39%	Workhorse Processes
	Post-Filter Chlorine ³	39%	15%	53%	

Notes about performance:


¹ Trends show this is primarily PAC removal

² A different biofilter sampled every day

³ Includes "UV Building" chlorine segment and CT Segment

Treatment and Ops Evaluation Strategy – Modeling

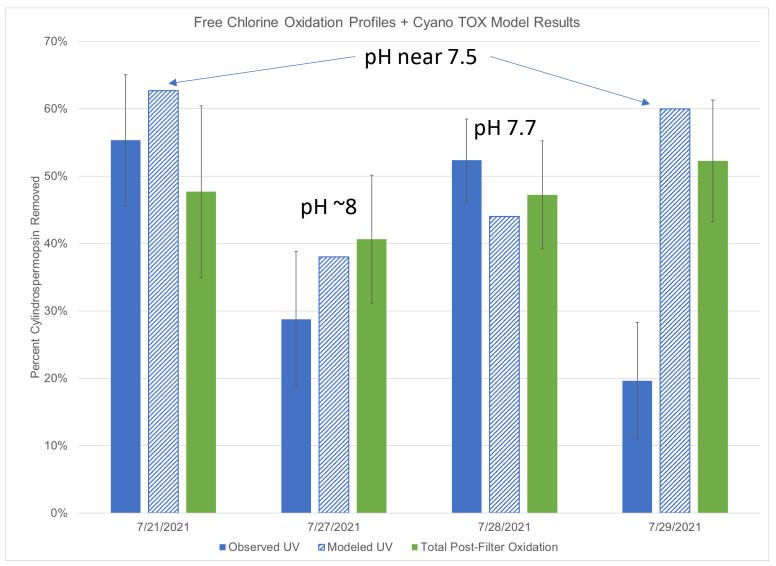
Modeling - Operational changes in post-filter chlorination

Fluoride

Orthophosphate

Potential Operations Practices:

- Increase A to achieve < 5ppm Cl₂ at B (in CYL emergency)¹
- 2. Add Cl_2 at **C** to take advantage of contact time across UV Building (already in practice)
- Place new Cl₂ feed point at D to utilize post-filter chlorine contact²
 - 50' of 60" ID pipe = 7,500 gals
- 4. Add Cl₂ in flume at **E** (after pH adjustment) for emergency oxidation


Note: All Oxidation performance tests to end at **B**, just prior to ammonia feed.

Transfer Pump Data mgd 50.00 UV Building - 4 @8,700 gpm: 6 UV Building 4 Transfer Pumps Filters (32) Flume 9 8 10 6 UV Units UY Bldg Injection Post-Chlorination Segment 5 MG Ground Sample Storage Point #10 Tank B Mixing/Metering Header System East Pump House 3 MG (3 Pumps) System 8 Ground Mizing Header Injection Storage Tank Distribution **Chemical Injection Points** 1 Hypochlorite Powered Activated Carbon West Pump House Cationic Polymer (4 Pumps) Lime (Slaked) Ferric Sulfate Carbon Dioxide Filter Aid Sodium Hydroxide Ammonia

¹ Temporary exceedance of D/DBP Rule MRDL for total chlorine of < 4.0 mg/L allowed per DOH ² Limited by chlorine compatibility concerns for UV reactor components

Calibrating "CyanoTOX"

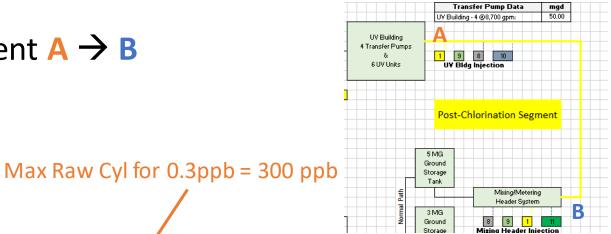
CyanoTOX models the UV and/or post-filter chlorination scenarios well

CT segment could not be accurately modeled because of low CYL at this location

Detection limit challenges

Observations from the testing

- High dependence on pH
- UV segment providing excellent removal
- When UV segment does not "remove", CT segment is an effective second barrier


CyanoTOX Model – Historical Performance

- Model Chlorine Contact Segment $A \rightarrow B$
 - pH = 7.5 8
 - $T = 30^{\circ}C$
 - Baffling Factor = 0.7 (pipe)
 - $Cl_{2,Final} = 1 4 mg/L$
 - Target Final C-toxin of 0.3 ppb

% CYL Oxidation at pH = 7.5

Flow Rate (mgd)	Detention Time (min)	Cl ₂ = 1ppm	Cl ₂ = 3ppm	Cl ₂ = 4 ppm
20	2.2	83.1%	99.5%	99.9%
25	1.7	74.7%	98.4%	99.6%
30	1.4	67.8%	96.7%	98.9%
35	1.2	62.1%	94.6%	97.9%
40	1.1	58.9%	93.1%	97.2%
45	1.0	55.5%	91.2%	96.1%

% CYL Oxidation at pH = 8.0

Detention Time (min)	Cl ₂ = 1ppm	Cl ₂ = 3ppm	Cl ₂ = 4 ppm
2.2	59.5%	93.3%	97.3%
1.7	50.2%	87.7%	93.9%
1.4	43.7%	82.2%	90.0%
1.2	38.9%	77.2%	86.1%
1.1	36.3%	74.2%	83.6%
1.0	33.7%	70.8%	80.6%
	Time (min) 2.2 1.7 1.4 1.2 1.1	Time (min)Cl2 = 1ppm2.259.5%1.750.2%1.443.7%1.238.9%1.136.3%	Time (min) $Cl_2 = 1ppm$ $Cl_2 = 3ppm$ 2.259.5%93.3%1.750.2%87.7%1.443.7%82.2%1.238.9%77.2%1.136.3%74.2%

Max Raw Cyl for 0.3 ppb = 0.7 ppb

Max Raw Cyl for 0.3ppb = 0.45ppb

CyanoTOX Model – Summary of Past Performance Maximum Concentrations of Post-filtered Cylindrospermopsin that the Cl₂ segment could handle to

WPB

WEST PALM BEACH

Maximum Concentrations of Post-filtered Cylindrospermopsin that the Cl_2 segme achieve 0.3 ppb

pH 7.5

Flow Rate (mgd)	Cl ₂ = 1ppm	Cl ₂ = 3ppm	Cl ₂ = 4 ppm
20	1.8	60	300
25	1.2	19	75
30	0.9	9.1	27
35	0.8	5.6	14
40	0.7	4.3	11
45	0.7	3.4	7.7

pH 8

prio			
Flow Rate (mgd)	Cl ₂ = 1ppm	Cl ₂ = 3ppm	Cl ₂ = 4 ppm
20	0.7	4.5	11
25	0.6	2.4	4.9
30	0.5	1.7	3.0
35	0.5	1.3	2.2
40	0.5	1.2	1.8
45	0.5	1.0	1.5

- Green = > 25ppb (low risk)
- Yellow = 10 25ppb (moderate risk)
- Red = < 10ppb (higher risk)

Takeaways

- Higher risk at pH 8 than pH 7.5
- Significant Risk of exceeding 0.3ppb with 1ppm Cl₂, at pH 7.5 or 8
- Risk somewhat reduced with higher Cl₂ (> 3ppm), particularly at pH 7.5
- Need to balance with DBP formation

• Model Chlorine Contact Segment $C \rightarrow A$

CyanoTOX Model – Impact of UV

chlorination section (0.2 - 0.5 ppm)

- pH = 7.5 8
- $T = 30^{\circ}C$
- Baffling Factor = 0.3 ($C \rightarrow A$)
- $Cl_{2,Final} (C \rightarrow A) = 0.2 0.5 mg/L (Limited by UV)$
- Model Chlorine Contact Segment $A \rightarrow B$
 - pH = 7.5 8
 - $T = 30^{\circ}C$
 - Baffling Factor = 0.7 (pipe)
 - $Cl_{2,Final} = 3 4 mg/L$

	Tra	nsfer Pump Data	mgd
	UV Buildir	ng - 4 @8,700 gpm:	50.00
UV Building			
4 Transfer Pumps			
ô.	1 9	8 10	
6 UV Units	UY BI	dg Injection	
	Post-C	Chlorination Seg	ment
		Ŭ	
	5 MG		
	Ground		
	Storage		
	-		
	Tank		
£	Tank	Mixing/Meteri	B
Latter La	Tank	Mixing/Meteri Header Suste	ng T
		Mixing/Meteri Header Syste	ng T
Normal Path	Tank 3 MG Ground		ng T

WEST PALM BEACH

CyanoTOX Model – Summary of Current Performance

Cl_{2 (segment)} = 1ppm Cl_{2 (segment)} = 3ppm $Cl_{2 (segment)} = 4ppm$ pH 8 **Flow Rate** $CI_{2,UV} =$ $CI_{2,UV} =$ $CI_{2,UV} =$ $CI_{2,UV} =$ $CI_{2,UV} =$ Cl_{2.UV} = 0.2ppm (mgd) **0.5ppm 0.2ppm 0.5ppm 0.2ppm 0.5ppm** 20 1.8 8.7 11 53 28 131 25 1.2 4.3 5.1 17 10 35 30 0.9 2.6 2.8 8.4 5.0 15 35 0.8 1.9 2.2 5.1 3.6 8.4 40 0.7 1.5 1.8 3.8 2.9 5.9 45 1.3 0.7 1.5 2.9 2.3 4.3

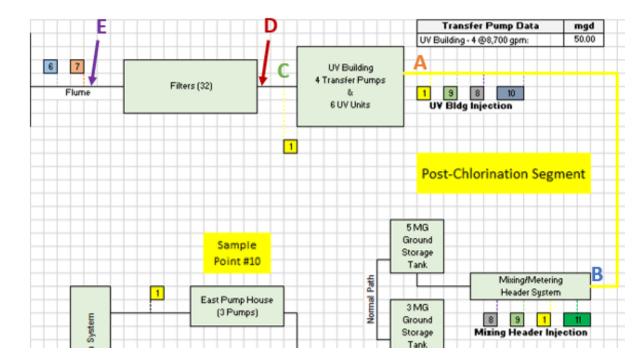
Maximum Concentrations of Post-filtered Cylindrospermopsin that the Cl₂ segment + UV segment WEST PALM BEACH could handle to achieve 0.3 ppb

рН 7.5	Cl _{2 (segment)}	= 1ppm	Cl _{2 (segmen}	_{t)} = 3ppm	Cl _{2 (segment)} = 4ppm		
Flow Rate (mgd)	Cl _{2,UV} = 0.2ppm	Cl _{2,UV} = 0.5ppm	Cl _{2,UV} = 0.2ppm	Cl _{2,UV} = 0.5ppm	Cl _{2,UV} = 0.2ppm	Cl _{2,UV} = 0.5ppm	
20	12	>1000	399	>1000	1996	>1000	
25	5.3	>500	85	>600	338	>800	
30	3.2	172	31	1679	94	5036	
35	2.3	74	16	523	41	1344	
40	1.8	36	11	214	27	528	
45	1.5	21	7.6	106	17	238	

Green = > 25ppb (low risk)

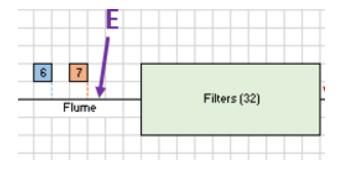
- Yellow = 10 25ppb (moderate risk)
- Red = < 10ppb (higher) risk)

Takeaways


- Risk significantly reduced, especially at:
 - Cl_{2.UV} of 0.5ppm
 - Cl₂, segment > 3ppm
 - pH 7.5
- Still risk at pH 8

CyanoTOX Model – Extended (0.2 ppm added pre-filter)

- Model Chlorine Contact Segment $\mathbf{E} \rightarrow$ Filters
 - pH = 7.5 8
 - T = 30°C
 - Baffling Factor = 0.5 ($E \rightarrow$ Filters)
 - $Cl_{2,Final} (C \rightarrow A) = 0.2 \text{ mg/L}$ (Limited by Filters)
- Model Chlorine Contact Segment $\mathbf{C} \rightarrow \mathbf{A}$
 - pH = 7.5 8
 - $T = 30^{\circ}C$
 - Baffling Factor = 0.3 ($C \rightarrow A$)
 - $CI_{2,Final} (C \rightarrow A) = 0.2 0.5 \text{ mg/L}$ (Limited by UV)
- Model Chlorine Contact Segment $A \rightarrow B$
 - pH = 7.5 8
 - $-T = 30^{\circ}C$
 - Baffling Factor = 0.7 (pipe)
 - $Cl_{2,Final} = 3 4 mg/L$


]a<u>:</u>z::n

CyanoTOX Model – Summary of pre-Filter Cl₂

Percent Removal if the pre-filter flume can be used with chlorination

% CYL Oxidation at 0.2ppm pre-filter Cl₂

Flow Rate (mgd)	Detention Time (min)	рН 7.5	рН 8	рН 8.5
20	21	91%	71%	38%
25	17	86%	63%	32%
30	14	80%	56%	27%
35	12	75%	51%	24%
40	11	72%	48%	22%
45	9	65%	41%	18%

Takeaways

- Significant oxidation can be achieved at pH 7.5.
- Effectiveness reduces significantly at pH 8 and pH 8.5
- Potentially viable but need to understand DBPs

CyanoTOX Model – Summary of Potential Pre-Filter Cl₂

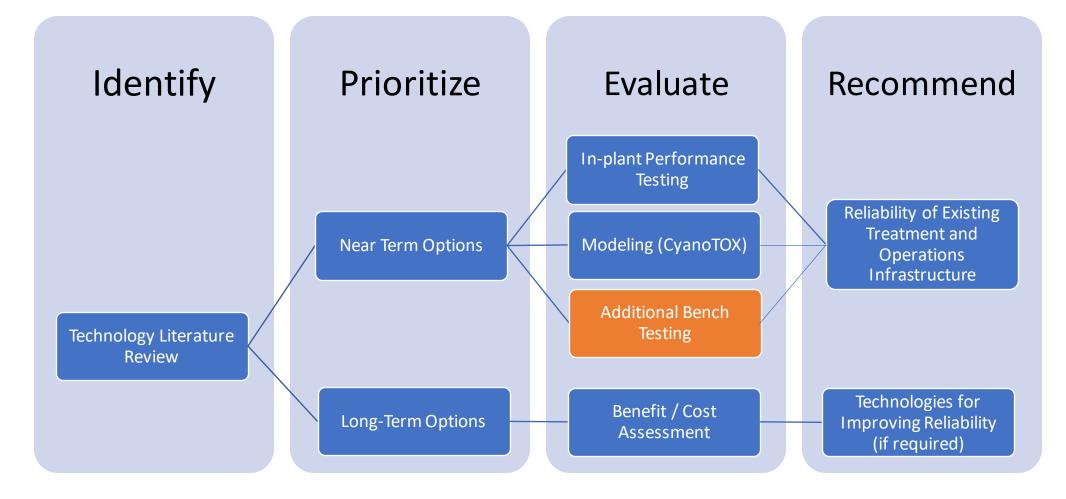
Maximum Concentrations of Post-filtered Cylindrospermopsin that the Cl_2 segment + UV segment + pre-filter flume could handle to achieve 0.3 ppb

pH 7.5	Cl _{2 (segment)} = 3ppm		Cl _{2 (segment)} = 4ppm	
Flow Rate (mgd)	Cl _{2,UV} = 0.2ppm	Cl _{2,UV} = 0.5ppm	Cl _{2,UV} = 0.2ppm	Cl _{2,UV} = 0.5ppm
	Cl _{2,pre-filt} = 0.2ppm			
20	>5000	>5000	>5000	>5000
25	721	>5000	2883	>5000
30	182	>5000	546	>5000
35	72	2957	185	>5000
40	43	1059	106	2609
45	24	410	54	925

рН 8	Cl ₂ (segment) = 3ppm	Cl _{2 (segment}) = 4 ppm
	Cl _{2,UV} = 0.2ppm	Cl _{2,UV} = 0.5ppm	Cl _{2,UV} = 0.2ppm	Cl _{2,UV} = 0.5ppm
Flow Rate (mgd)	Cl _{2,pre-filt} = 0.2ppm			
20	43	231	106	574
25	15	59	30	118
30	7	23	12	40
35	5	12	8	20
40	4	8	6	13
45	3	6	4	8

WEST PALM BEACH

- Green = > 25ppb (low risk)
- Yellow = 10 25ppb (moderate risk)
- Red = < 10ppb (higher risk)


Takeaways

- Very effective at pH 7.5
- Allows for 0.2ppm Cl₂ at UV
- Expands effectiveness at pH 8.0, but
- Still important to adjust pH to 7.5
- DBPs will be of concern

Treatment and Ops Evaluation Strategy – Bench Testing

Questions raised during testing and modeling

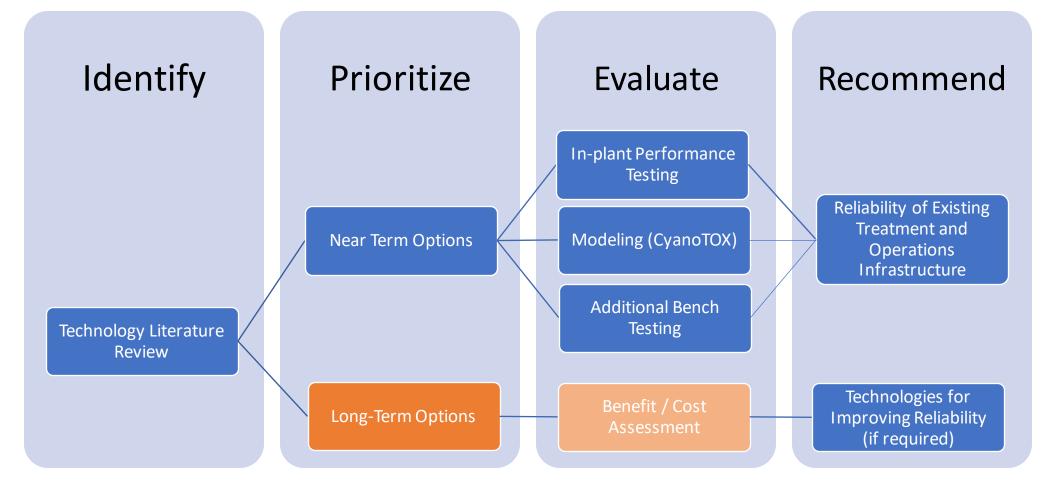
- PAC Performance
 - Impact of contact time
 - Impact of PAC dose
 - Impact of PAC product

- Chlorine Performance
 - Impact of location
 - "CT segment", "UV Building", and "Pre-filter"
 - Impact of pH
 - Performance and constraints
 - Disinfection Byproduct formation

Bench Testing Contract

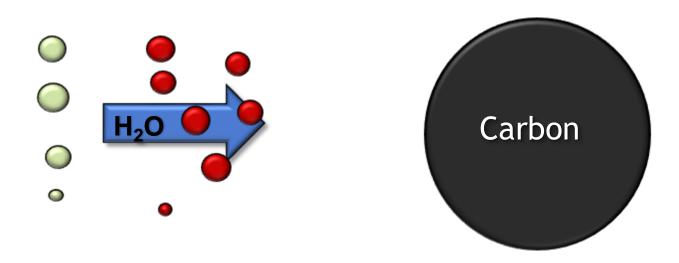
Hazen and Sawyer contracted to perform bench testing

- Collect water from 3 locations in the plant and perform jar testing
- 1. PAC removal of Cylindrospermopsin
 - Raw water treatment
 - 3 PACs, 3 doses, 3 reaction times,
 - Measure treated temperature, cylindrospermopsin, TOC
- 2. Chlorine Demand/Decay
 - 3 water sources, 4 "locations"
 - Softened (pre-filter flume), Filtered (UV bldg. and CT segment), Post-UV (CT segment)
 - 2 pH (7.5, 8.0), One temperature (20°C)
 - Decay Curves for 2 doses per water (1, 3, 5, 10 depending on water)
 - 2 Finished chloramine decay curves (CT segment only and CT + UV segments)
 - Measure pH, temp, fCl2, tCl2, mCl2 and fNH3.
- 3. Chlorine Oxidation of Cylindrospermopsin
 - 3 Water sources, 4 locations
 - Softened (pre-filter flume), Filtered (UV bldg. and CT segment), Post-UV (CT segment)
 - Oxidation "validation" tests
 - Softened: 2 pH, 1 dose and decay time combinations for each pH
 - Filtered, UV bldg; 2pH, 1 dose and decay combination for each pH
 - Filtered (CT segment), 2 pH, 1 dose and decay combination for each pH
 - Post-UV (CT segment), 2 pH, 1 dose and decay combination for each pH
 - Post-UV chloramine, 1 pH, 1 dose, instantaneous and 24 hours later).

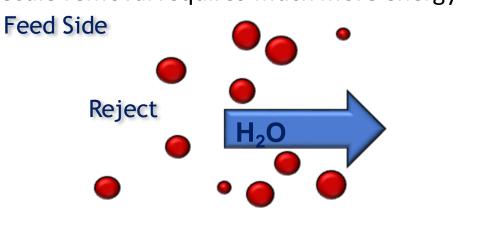


Near-term Summary

- In-plant testing indicates PAC and Cl₂ treatment appear effective for controlling Cylindrospermopsin
- Modeling indicating chlorination practices can provide effective oxidation of cylindrospermopsin
 - Reliance on CT segment only is risky
 - Addition of UV chlorination segment greatly reduces risk (at 0.5ppm residual Cl₂), but needs to be coupled with pH control to ~ 7.5
 - Addition of a pre-filter chlorination segment (flume) could further assist
 - Allows for reduced UV segment chlorination (0.2ppm)
 - Maintaining pH at ~ 7.5 is still critically important
- Ongoing bench testing to further understand benefits and limits of treatment
 - PAC and Cl₂ oxidation of CYL performance testing
 - PAC testing to include multiple products, doses, contact times
 - Cl₂ demand testing to understand background matrix effects
 - 3 segments (pre-filter flume, UV building, Cl₂ contact chamber)
 - Understanding impacts on DBP formation is critical



Activated Carbon Adsorption

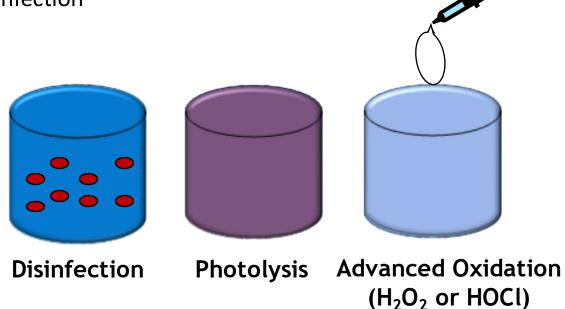

- If substances "don't like" being in water (hydrophobic) they will prefer to interact with a hydrophobic, solid material
- We can take advantage of this to remove many organics

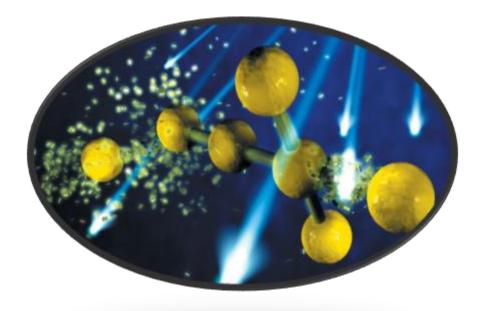
Membrane Separations

- Thin barrier to constituents in water
- What gets through depends on size
 - Microfiltration (MF)
 - Ultrafiltration (UF)
 - Nanofiltration (NF)
 - Reverse Osmosis (RO)
- Molecule removal requires much more energy

Permeate

Molecule Removal

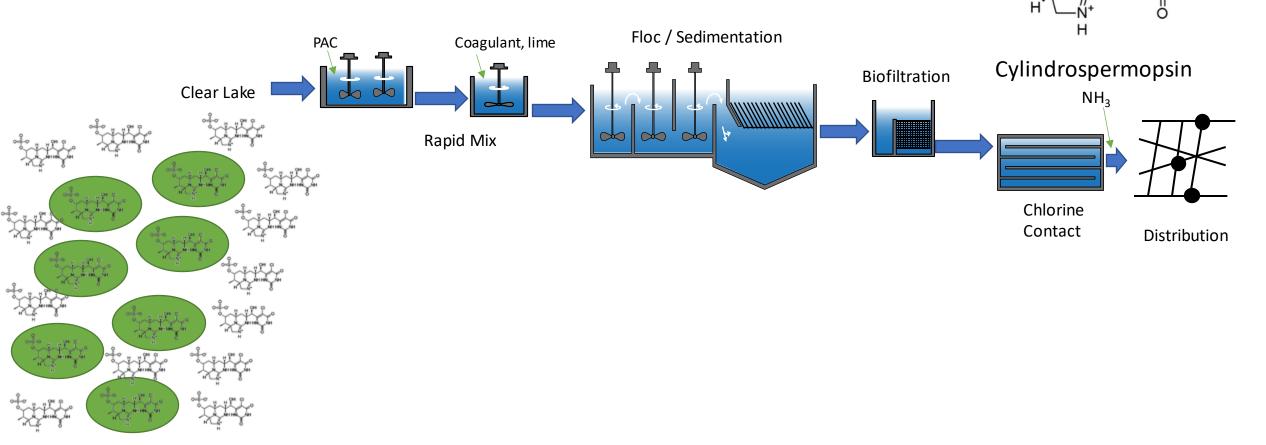

Particle


Removal

UV Advanced Oxidation

- UV is high energy and can provide effective contaminant transformation if:
 - UV energy is absorbed by contaminant
 - Bonds are amenable to breaking
- Two (or 3) "types" of UV treatment
 - Disinfection effective and low energy barrier for organisms
 - Photolysis / Oxidation UV absorbed by a chemical causing a reaction
- Oxidation typically requires 100 1,000x more energy than disinfection

Biofiltration



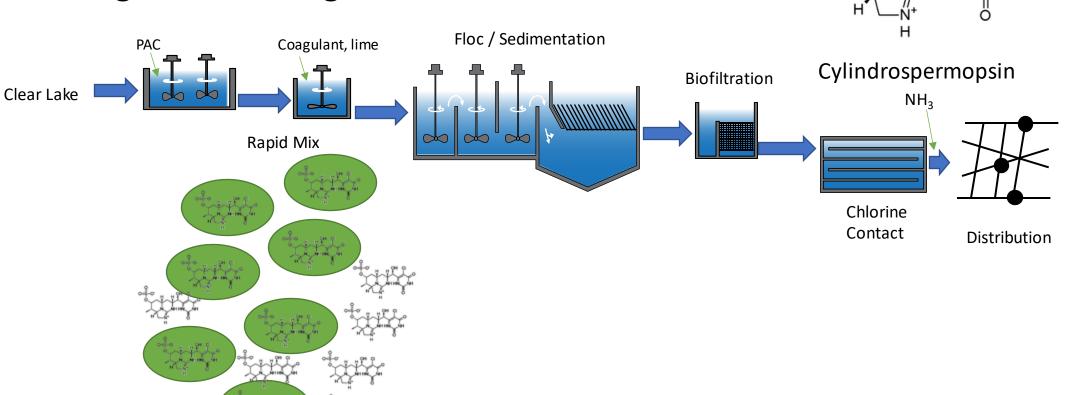
,ŃH HŃ,

NH.

0 0=S-0-

 Biological Filtration (BAF) provides an opportunity for microorganisms to degrade contaminants

Biofiltration



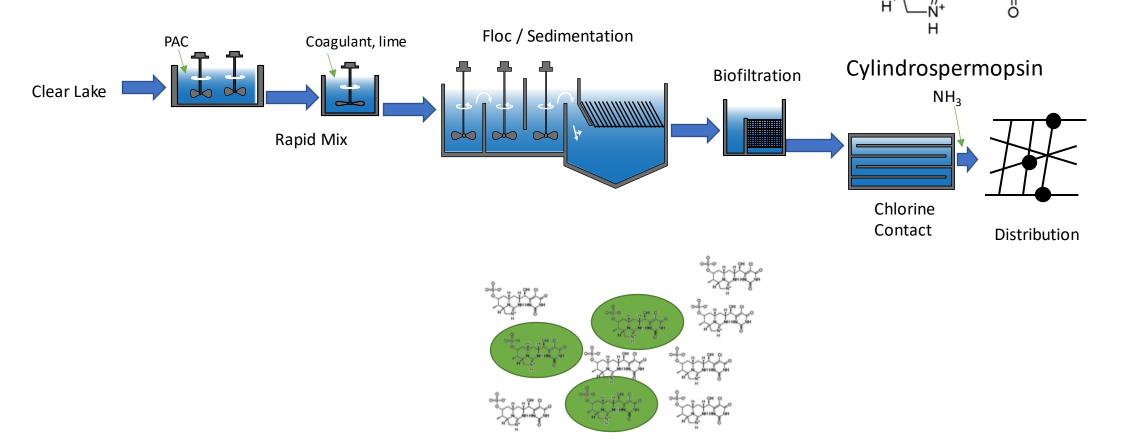
,ŃH HŃ.

NH.

0 0=S-0-

 Biological Filtration (BAF) provides an opportunity for microorganisms to degrade contaminants

Biofiltration


н

,ŃH HŃ.

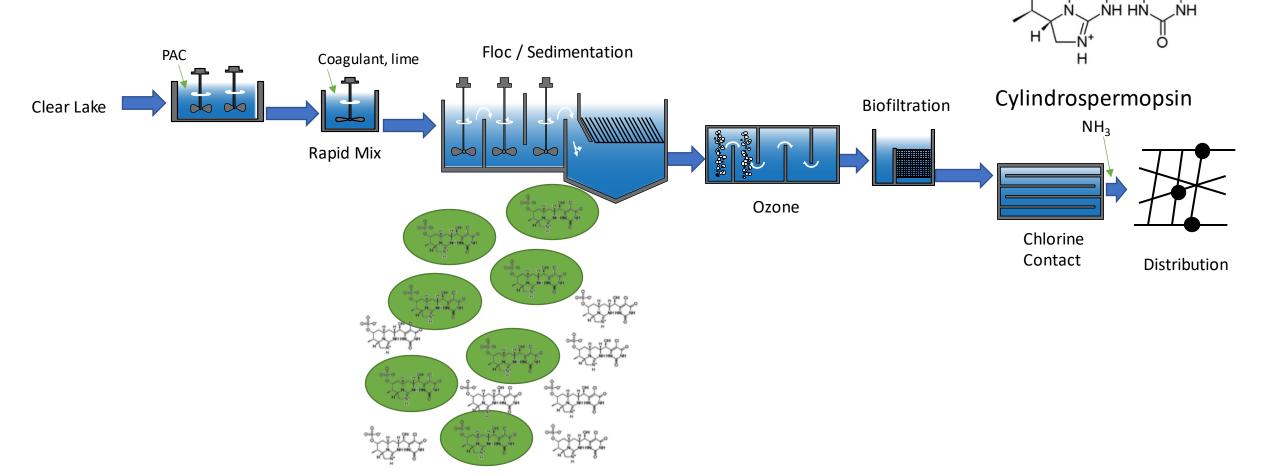
,ŃΗ

0 0=S-0-

 Biological Filtration (BAF) provides an opportunity for microorganisms to degrade contaminants

Ozone

н


н

OH CI

0

0 0=\$-0-

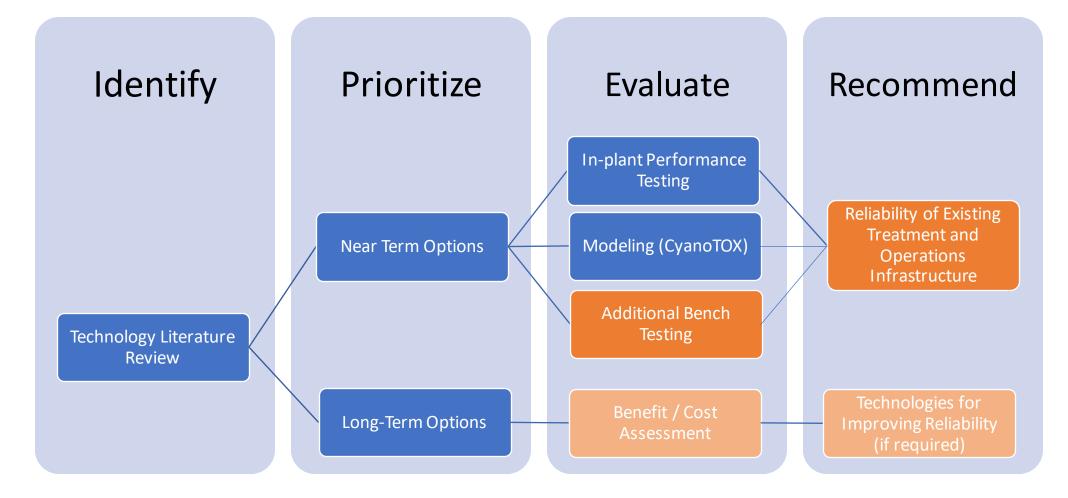
• Ozone is very reactive towards CYL

Benefits of effective technologies WEST PALM BEACH

Technology	Removes T&O	Effective for Cylindrospermopsin	Emerging Contaminants	Effective Disinfection	"As Needed" Operations
Cl ₂		pH dependent		~	
PAC	Variable	Variable	Variable		\checkmark
GAC*	\sim	\checkmark			
Ozone					
Ozone/BAC	\checkmark	\sim	V		
UV AOP					\checkmark
RO / NF					

*GAC describing long-EBCT post-filter contactor

Drawbacks of Technologies



Technology	Energy Intensive	Expensive	Regulated Byproducts	Impacts Treatment	Efficiency Impacted by Background WQ
Cl ₂		pH dependent	(DBPs)		
PAC		\$ existing infrastructure		(Turbidity)	
GAC*		\$\$\$\$			
Ozone		\$\$\$	(Bromate)	(DS Stability)	
Ozone/BAC		\$\$\$	(Bromate)		
UV AOP		\$\$\$\$	(Bromate?)		
Ozone AOP		\$\$\$	(Bromate?)		

*GAC describing long-EBCT post-filter contactor

Treatment and Ops Evaluation Strategy – Next Steps

Treatment & Operations: Preliminary Alternatives

- Optimize Near-term PAC and chlorine treatment processes
 - Define performance, identify challenges to performance, evaluate performance-limiting factors (ie DBPs)
 - Define extent of reliable performance is "more" treatment needed?
- Evaluate feasibility, benefits, cost, and limitations of effective advanced treatment processes for enhanced removal

– Ozone, GAC, UV AOP, RO/NF Membranes

Looking Forward

- Continue Near-term Actions
- Monthly Technical Work Sessions through February
- Focus on source water management, treatment, distribution water quality, and monitoring strategies

Thank you!

